In words, the first Born approximation tells us that:

The scattering amplitude is the Fourier transform of the scattering potential, and
the scattering cross section is the magnitude squared of the scattering amplitude.

To apply this, we need to know the relevant potential:

The potential for electrons is the Coulomb potential.
The potential for visible light is the index of refraction.
The potential for neutrons is the nuclear density.

The potential for x-rays is the electron density.

In words, we might say:

Electrons feel the electrostatic potential.

Visible light feels the index of refraction.

In our experiment, the light experiences the absorption produced by the dark areas.

This corresponds to the imaginary component of the index of refraction.
http://henke.lbl.gov/optical_constants/getdb2.html

Neutrons feel the nuclei of the atoms.
http://en.wikipedia.org/wiki/Neutron_cross_section
http://periodictable.com/Properties/A/NeutronCrossSection.html

X-rays feel the electrons.
http://henke.Ibl.gov/optical_constants/atten2.html
http://physics.nist.gov/PhysRefData/Xcom/html/xcom1-t.html
http://henke.Ibl.gov/optical _constants/asf.html
http://skuld.bmsc.washington.edu/scatter/AS_form.html

In the classical E&M description, the EM waves wiggle the electrons,
and the wiggling (therefore accelerating) electrons emit EM waves.
The cross section for this is called the Thomson cross section.
http://farside.ph.utexas.edu/teaching/em/lectures/node96.html
http://farside.ph.utexas.edu/teaching/jk1/lectures/node85.html

Non-relativistic quantum mechanics gives the same answer as
classical E&M---this almost always happens.
http://quantummechanics.ucsd.edu/ph130a/130_notes/node473.html

When the photon energy becomes large compared with the rest
mass energy of the electron, the Thomson cross section is replaced
by the Klein-Nishina cross section.
http://en.wikipedia.org/wiki/Klein-Nishina formula



http://henke.lbl.gov/optical_constants/getdb2.html
http://en.wikipedia.org/wiki/Neutron_cross_section
http://periodictable.com/Properties/A/NeutronCrossSection.html
http://henke.lbl.gov/optical_constants/atten2.html
http://physics.nist.gov/PhysRefData/Xcom/html/xcom1-t.html
http://henke.lbl.gov/optical_constants/asf.html
http://skuld.bmsc.washington.edu/scatter/AS_form.html
http://farside.ph.utexas.edu/teaching/em/lectures/node96.html
http://farside.ph.utexas.edu/teaching/jk1/lectures/node85.html
http://quantummechanics.ucsd.edu/ph130a/130_notes/node473.html
http://en.wikipedia.org/wiki/Klein-Nishina_formula

@) XTOP 2006

First Born approximation in x-ray scattering (so-called kinematical scattering)
plus

the far-field approximation

plus

the neglection of the x-ray scattering by spins (no magnetic scattering):

the scattered wave is proportional to the Fourier transformation of the electron density

E(Q) o< J'd?’r p(r)e "’

Q is the scattering vector. If the scattering is elastic, then:

XTOP 2006 tutorial 2



Born approximation

f(6,0) = [d°RV () = £ (q)

47zh2

Scattering amplitude = Fourier transform of the potential

2

Scattering cross section 0 = Id(ﬁjd(COS 6’)‘ f. (0, (0)‘

Interpretation of Born approx. Higher terms
— one step scattering — two step scattering

~|




The first Born approximation

Using (1.23), we can write the differential cross section in the first Born approximation

/e‘f‘jw V') d

where g = ko — k and hqg is the momentum transfer;
h ,{O and Ak are the linear momenta of the incident and scattered particles, respectively

as follows:
2

= s 140)) 47[;4

In elastic scattering, the magnitudes of ko and & are equal (Figure 2); hence

—

> 0
ko — k| = \/ké + k? — 2kko cos = k\/Z(l — c0s20) = 2ksin (5) .

q:

o 1)

Figure 2:
Momentum transfer for elastic scattering:

q — |"I('[:l - -Ilr| — 2!\’_ Si]l(HJ;’I.ZJ, .‘Ef'[] = i

12




From Griffiths' Introduction to Quantum Mechanics
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Chapter 11 Scattering

clearly, the result (G + Gp) still satisfies Equation 11.52. This ambiguity corre-
sponds precisely to the ambiguity in how to skirt the poles—a different choice
amounts to picking a different function Go(r).

Returning to Equation 11.53, the general solution to the Schridinger equation
takes the form

m eiklr—rol

27h? ) Ir—rg|

¥ (r) = Yo(r) — V (ro)y (ro) d°ro, [11.67]

where Y satisfies the free-particle Schrodinger equation,
(V2 + k%) = 0. [11.68]

Equation 11.67 is the integral form of the Schriédinger equation; it is entirely
equivalent to the more familiar differential form. At first glance it looks like an
explicit solution to the Schrédinger equation (for any potential)—which is too
good to be true. Don’t be deceived: There’s a i under the integral sign on the
right hand side, so you can’t do the integral unless you already know the solution!
Nevertheless, the integral form can be very powerful, and it is particularly well
suited to scattering problems, as we’ll see in the following section.

Problem 11.8 Check that Equation 11.65 satisfies Equation 11.52, by direct sub-
stitution. Hint: V2(1/r) = —4783(r).12

* xProblem 11.9 Show that the ground state of hydrogen (Equation 4.80) satisfies

the integral form of the Schrodinger equation, for the appropriate V and E (note
that E is negative, so k = ik, where k = +/—2mE /h).

11.4.2 The First Born Approximation

Suppose V (rp) is localized about rp = 0 (that is, the potential drops to zero outside
some finite region, as is typical for a scattering problem), and we want to calculate
¥ (r) at points far away from the scattering center. Then |r| > |rg| for all points
that contribute to the integral in Equation 11.67, so

r-r
r—rof =2+ —2r-ro =2 (1-2252). [11.69]
3
and hence

r—xg| =r—7F-rp. [11.70]

12See, for example, D. Griffiths. Introduction to Electrodynamics, 3rd ed. (Prentice Hall. Upper
Saddle River, NJ. 1999). Section 1.5.3.
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Section 11.4: The Born Approximation 413

Let
k = k#: [11.71]
then
ot KIr—ro| ~ eikre—ik-ro’ [11.72]
and therefore ik Ir—ro| s
\r—ry S
Tr - rOI ~ er e—tkd‘o. [1 173]

(In the denominator we can afford to make the more radical approximation
Ir —rp| = r; in the exponent we need to keep the next term. If this puzzles
you, try writing out the next term in the expansion of the denominator. What we
are doing is expanding in powers of the small quantity (rp/7), and dropping all but
the lowest order.)

In the case of scattering, we want

Yo(r) = Ae*?, [11.74]

representing an incident plane wave. For large r, then,

) ikr )
p(r) = At — LS [ TR0y (rg)y(rg) dPro. [11.75]
2nh* r
This is in the standard form (Equation 11.12), and we can read off the scattering
amplitude:
m -
6, ¢) = — e~ KTy (r0) ¢ (ro) dro. 11.76
f©6.9) znthf (ro)¥ (ro)d’ro [ ]

So far, this is exact. Now we invoke the Born approximation: Suppose the
incoming plane wave is not substantially altered by the potential; then it makes

sense to use ) o
| ¥ (ro) = Yo(ro) = Ae'*0 = Ak, [11.77]

where
kK =kz, [11.78]

inside the integral. (This would be the exact wave function, if V were zero; it is
essentially a weak potential approximation.!3) In the Born approximation, then,

f0.6)=——"_ f el & KTy g0y By [11.79]

27 h? \

13 Generally, partial wave analysis is useful when the incident particle ha
only the first few terms in fhe series contribute significantly; the Born approximatio
potential is weak, comparefl to the incident energy. so the deflection is small.

ow energy, for then
applies when the

The scattering amplitude f is the Fourier transfrom of the potential V
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out going

momentum K=K

aka

two theta!

The scattering triangle in momentum space
Chapter 11 Scattering

momentum
x=k'-k transfer
FIGURE 11.11: Two wave vectors in the Born

approximation: k’ points in the incident direction, k
in the scattered direction.

k'=kz

incoming momentum

(In case you have lost track of the definitions of k’ and K, they both have magnitude
k., but the former points in the direction of the incident beam, while the latter points
toward the detector—see Figure 11.11; A(k — k’) is the momentum transfer in
the process.)

In particular, for low energy (long wavelength) scattering, the exponential
factor is essentially constant over the scattering region, and the Born approximation
simplifies to

760.0)= ——"_ | vayd®r, (low eneray). [11.80]
2w h?

(I dropped the subscript on r, since there is no likelihood of confusion at this point.)

Example 11.4 Low-energy soft-sphere scattering.!* Suppose

V. ifr <a.
vy=1" "7 =1 [11.81]
0. ifr>a.
In this case the low-energy scattering amplitude is
m 4
6. ¢) = — V (-—7m3> , 11.82
f6.¢ 5203 [11.82]
(independent of 6 and ¢), the differential cross-section is
2
do N 2mVoa®\* ‘
—=|fFrE={— . 11.83
and the total cross-section is
2
2mVpa® \~
=~ 4x (-’L‘?,“—) . [11.84]
k)i

HYou can't apply the Born approximation to hard-sphere scattering (V) = oo)—the integral
blows up. The point is that we assumed the potential is weak. and doesn’t change the wave function
much in the scattering region. But a hard sphere changes it radically —from Ae'*< 10 zero.
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the differential scattering cross section is equal to

the magnitude squared of the scattering amplitude

Probability flows into dQ at the rate 529
SCATTERING
R(AQ) =] * er’dQ THEORY
hik
=11 % a0 (19.2.17)
u

Since it arrives at the rate scattering amplitude

differential scattering Jine=fik /u sec™" area™ squared
cross section Z—;dQ=R(eQ)=Iﬂde
Jinc

so that finally
do
—=|1(6, ¢)|? 19.2.18
19 |£(6, o) ( )

Thus, in the time-independent picture, the calculation of do/dQ reduces to the
calculation of f(6, ¢ ).

ATter this general discussion, we turn to specific calculations. In the next section
the calculation of do/dQ is carried out in the time-dependent picture to first order.
In Section 4, we calculate do /dQ to first order in the time-independent picture. (The
two results agree, of course.) In Section 5, we go beyond perturbation theory and
discuss some general features of f for spherically symmetric potentials. Two-particle
scattering is discussed in Section 6.

19.3. The Born Approximation (Time-Dependent Description)

Consider an initial wave packet that is so broad that it can be approximated
by a plane wave |p;). Its fate after scattering is determined by the propagator
U(t/> o0, t;— — 0), that is, by the operator

S= lim U(t, 1)
fy>0
L — — oo

which is called the S matrix. The probability of the particle entering the detector in
the direction (0, ¢) with opening angle dQ is the probability that the final momentum
P lies in a cone of opening angle dQ in the direction (0, ¢):

P(pi>dQ)= Y [<pSIp>I*

prindQ
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CHAPTER 19

From Shankar's Principles of Quantum Mechanics

specifying their states, such as momentum, spin, etc. We are concerned only with
nonrelativistic, elastic scattering of structureless spinless particles.

In the next three sections, we deal with a formalism that describes a single
particle scattering from a potential V' (r). As it stands, the formalism describes a
particle colliding with an immobile target whose only role is to provide the potential.
(This picture provides a good approximation to processes where a light particle
collides with a very heavy one, say an a particle colliding with a heavy nucleus.) In
Section 19.6 we see how, upon proper interpretation, the same formalism describes
two-body collisions in the CM frame. In that section we will also see how the
description of the scattering process in the CM frame can be translated to another
frame, called the lab frame, where the target is initially at rest. It is important to
know how to pass from one frame to the other, since theoretical calculations are
most easily done in the CM frame, whereas most experiments are done in the lab
frame.

19.2. Recapitulation of One-Dimensional Scattering and Overview

Although we are concerned here with scattering in three dimensions, we begin
by recalling one-dimensional scattering, for it shares many common features with
its three-dimensional counterpart. The practical question one asks is the following:
If a beam of nearly monoenergetic particles with mean momenta {P) = fik, are
incident from the far left (x— —o0) on a potential V' (x) which tends to zero as
| x| = 00, what fraction T will get transmitted and what fraction R will get reflected?{
It is not a priori obvious that the above question can be answered, since the mean
momentum does not specify the quantum states of the incoming particles. But it
turns out that if the individual momentum space wave functions are sharply peaked
at fiko, the reflection and transmission probabilities depend only on ko, and not on
the detailed shapes of the wave functions. Thus it is possible to calculate R(ko) and
T (ko) that apply to every particle in the beam. Let us recall some of the details.

(1) We start with some wave packet, say a Gaussian, with {P»="fik, and
(X >—> — 0.

(2) We expand this packet in terms of the eigenfunctions y, of H= T+ V with
coefficients a(k). The functions y; have the following property:

v > A4 e—ikx+Beikx
k o

— Ce* (19.2.1)

X— 0

In other words, the asymptotic form of w, contains an incident wave 4 ¢** and a
reflected wave Be ** as x— — o0, and just a transmitted wave Ce** as x—oo0.

Although the most general solution also contains a D e ** piece as x— o0, we set

1 In general, the particle can come in from the far right as well. Also ¥(x) need not tend to zero at both
ends, but to constants V. and V_ as x—+o00. We assume V. = V_=0 for simplicity. We also assume
|x¥(x)| -0 as | x| o0, so that the particle is asymptotically free (w ~e***).
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Figure 19.1. A schematic description of scattering. The incident particles, shown by arrows, are really
described by wave packets (only one is shown) with mean momentum (P)»=(#k,> and mean impact
parameter {p) uniformly distributed in the p-plane out to pmax> o, the range of the potential. The shaded
region near the origin stands for the domain where the potential is effective. The detector catches all
particles that emerge in the cone of opening angle dQ. The beam is assumed to be coming in along the
Z axis.

D=0 on physical grounds: the incident wave A **
wave as x— oo.

(3) We propagate the wave packet in time by attaching to the expansion
coefficients a(k) the time dependence e **/”, where E=#’k’/2u. We examine the
resulting solution as t— oo and identify the reflected and transmitted packets. From
the norms of these we get R and T respectively.

(4) We find at this stage that if the incident packet is sharply peaked in momen-
tum space at #iko, R and T depend only on &y and not on the detailed shape of the
wave function. Thus the answer to the question raised at the outset is that a fraction
R(ko) of the incident particles will get reflected and a fraction T'(ko) will get
transmitted.

(5) Having done all this hard work, we find at the end that the same result
could have been obtained by considering just one eigenfunction y,, and taking the
ratios of the transmitted and reflected current densities to the incident curent density.

can only produce a right-going

The scattering problem in three dimensions has many similarities with its one-
dimensional counterpart and also several differences that inevitably accompany the
increase in dimensionality. First of all, the incident particles (coming out of the
accelerator) are characterized, not by just the mean momentum (P) = fik,, but also
by the fact that they are uniformly distributed in the impact parameter p, which is
the coordinate in the plane perpendicular to ko (Fig. 19.1). The distribution is of
course not uniform out to p— o0, but only up to Pmax>ro, where ro, the range of
the potential, is the distance scale beyond which the potential is negligible. [For
instance, if V(r)=e"2/"2, the range ro~a.] The problem is to calculate the rate at
which particles get scattered into a far away detector that subtends a solid angle dQ2
in the direction (0, ¢) measured relative to the beam direction (Fig. 19.1). To be
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precise, one wants the differential cross section do/dQ defined as follows:

do(0, ¢) 40— number of particles scattered into dQ/sec

— - (19.2.2)
aQ number incident/sec/area in the p plane

The calculation of do/dQ proceeds as follows.{

(1) One takes some initial wave packet with mean momentum {P) =ik, and
mean impact parameter {p). The mean coordinate in the beam direction is not
relevant, as long as it is far away from the origin.

(2) One expands the wave packet in terms of the eigenfunctions yy of H=
T+ V which are of the form

Wk=vlinc+‘ysc (19.2.3)

where i, is the incident wave ¢’*" and .. is the scattered wave. One takes only
those solutions in which . is purely outgoing. We shall have more to say about
¥, In @ moment.

(3) One propagates the wave packet by attaching the time-dependence factor
e /" (E=#k?/2p) to each coefficient a(k) in the expansion.

(4) One identifies the scattered wave as t—o0, and calculates the probability
current density associated with it. One integrates the total flow of probability into
the cone dQ at (6, ¢). This gives the probability that the incident particle goes into
the detector at (6, ¢). One finds that if the momentum space wave function of the
incident wave packet is sharply peaked at {P) =7k, the probability of going into
dQ depends only on 7k, and {p). Call this probability P(p, koy—d2).

(5) One considers next a beam of particle with n(p) particles per second per
unit area in the p plane. The number scattering into dQ per second is

ndQ) = jP(p, ko—>dQ)n(p) d’p (19.2.4)

Since in the experiment n(p) =17, a constant, we have from Eq. (192.2)

do dQ=ﬂ@—)=JP(p, ko—dQ) d°p (19.2.5)
aQ n

(6) After all this work is done one finds that do/dQ could have been calculated
from considering just the static solution yy, and computing in the limit r— oo, the
ratio of the probability flow per second into dQ associated with y, to the incident
probability current density associated with e™". The reason the time-dependent
picture reduces to the time-independent picture is the same as in one dimension: as
we broaden the incident wave packet more and more in coordinate space, the incident
and scattered waves begin to coexist in a steady-state configuration, y,,. What about

1 We do not consider the details here, for they are quite similar to the one-dimensional case. The few
differences alone are discussed. See Taylor’s book for the details.



the average over {p>? This is no longer necessary, since the incident packet is now
a plane wave €’*" which is already uniform in p.}

Let us consider some details of extracting do /dQ from y\,. Choosing the z axis
parallel to ko and dropping the subscript 0, we obtain

vi=e*+y(r, 0, ¢) (19.2.6)

where 0 and ¢ are defined in Fig. 19.1. Although the detailed form of y,. depends
on the potential, we know that far from the origin it satisfies the free-particle equation
[assuming r V' (r)—0 as r—o0].

(V+E)ye=0  (r>o0) (19.2.7)

and is purely outgoing.
Recalling the general solution to the free-particle equation (in a region that
excludes the origin) we get

Ve T2 Y X (Ayji(kr) + Biny(kr)) Y7'(6, ¢) (19.2.8)
I m

Notice that we do not exclude the Neumann functions because they are perfectly
well behaved as r—oo. Since

Jitkr) == sin(kr —Ir /2) /(kr)
(19.2.9)
n;(kr) - cos(kr—In/2)/(kr)

it must be that 4,/B,= —i, so that we get a purely outgoing wave ¢*"/kr. With this
condition, the asymptotic form of the scattered wave is

ikr

Ve o T (i) (= B)YT(0. 9) (192.10)
I m
or
eikr
Ve S0, 98 (19.2.11)
and
) eikr
v —= ¢ +f(6, ¢) — (19.2.12)
@ r

where f'is called the scattering amplitude.

I Let us note. as we did in one dimension, that a wave packet does not simply become a plane wave as
we broaden it, for the former has norm unity and the latter has norm &°(0). So it is assumed that as
the packet is broadened, its norm is steadily increased in such a way that we end up with a plane wave.
In any case, the overall norm has no significance.

§ Actually falso depends on k; this dependence is not shown explicitly.
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To get the differential cross section, we need the ratio of the probability flowing
into dQ per second to the incident current density. So what are j,. and i, the
incident and scattered current densities? Though we have repeatedly spoken of these
quantities, they are not well defined unless we invoke further physical ideas. This is
because there is only one current density j associated with wy and it is quadratic in
wi. So j is not just a sum of two pieces, one due to ¢** and one due to v, ; there
are cross terms.} We get around this problem as follows. We note that as r— 00, Wy
is negligible compared to ¢** because of the 1/r factor. So we calculate the incident
current due to ¢** to be

o oo we ol
|jinc| =|— (e—tkzv elkz_ezkzv e—lkz)
2ui
_k
y2i

(19.2.13)

We cannot use this trick to calculate js. into dQ because w,. never dominates over
¢**. So we use another trick. We say that ¢** is really an abstraction for a wave
that is limited in the transverse direction by some pPm.(>>#o). Thus in any realistic
description, only . will survive as r— oo for 0 #0.§ (For a given pp.x, the incident
wave is present only for 60 < pmax/r. We can make 60 arbitrarily small by increasing
the r at which the detector is located.) With this in mind we calculate (for 8 #0)

fi
fe=— (VEVYe— v VY&) (19.2.14)
2ui
Now
1 0
V=er£+eei+e¢%— e (19.2.15)
or r o0 rsin 6 0¢

The last two pieces in V are irrelevant as r—oo0. When the first acts on the asymptotic
Vses

a eikr eikr 1
—f(0, ¢) —=1(6, p)ik —+ 0(7)
or r r r
so that
Le, fik
Je=3 1 /17— (19.2.16)
r U

1 We did not have to worry about this in one dimension because j due to A e**+Be ** is
(Fik /) (| A]* = | B|*) =jine + jror With no cross terms.

§ In fact, only in this more realistic picture is it sensible to say that the particles entering the detectors at
0 #0 are scattered (and not unscattered incident) particles. At =0, there is no way (operationally) to
separate the incident and scattered particles. To compare theory with experiment, one extracts /(6 =0)
by extrapolating f(6) from 6 0.
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the magnitude squared of the scattering amplitude
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hik
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u

Since it arrives at the rate scattering amplitude

differential scattering Jine=fik /u sec™" area™ squared
cross section Z—;dQ=R(eQ)=Iﬂde
Jinc

so that finally
do
—=|1(6, ¢)|? 19.2.18
19 |£(6, o) ( )

Thus, in the time-independent picture, the calculation of do/dQ reduces to the
calculation of f(6, ¢ ).

ATter this general discussion, we turn to specific calculations. In the next section
the calculation of do/dQ is carried out in the time-dependent picture to first order.
In Section 4, we calculate do /dQ to first order in the time-independent picture. (The
two results agree, of course.) In Section 5, we go beyond perturbation theory and
discuss some general features of f for spherically symmetric potentials. Two-particle
scattering is discussed in Section 6.

19.3. The Born Approximation (Time-Dependent Description)

Consider an initial wave packet that is so broad that it can be approximated
by a plane wave |p;). Its fate after scattering is determined by the propagator
U(t/> o0, t;— — 0), that is, by the operator

S= lim U(t, 1)
fy>0
L — — oo

which is called the S matrix. The probability of the particle entering the detector in
the direction (0, ¢) with opening angle dQ is the probability that the final momentum
P lies in a cone of opening angle dQ in the direction (0, ¢):

P(pi>dQ)= Y [<pSIp>I*
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Born approximation in X-ray scattering

Wave function ‘P()?) Electric field U()?)
Potential U (7() Electron density ,0(7<)
SChrédinger equation Wave equation
(V2 +K?(X) =U(R)P(E) (V2 +k? (X)) = p(R)u(R)
Scattering amplitude = Scattered electric field =
Fourier transform of potential Fourier transform of density
f(d) = FU(X)) E (K, ki) = [ p(x)e>™ % )dx
Cross section in direction 6,0 Intensity of scattered field
| 2
do |2 & —|F(h,k,I
89 _ | (g) ] F(h.k.)

dQ



Born approximation: Coulomb potential

Screened Coulomb potential Pure Coulomb in limit
V)= o 150 and &_} Ze-Ze
)= 1 7 dre,

Fourier transform can be solved analytically

. - iy 2m sin(qr')

= — d’xX'V(x"Ne" == \dr'V(r")r"
£@) 47;;-12 (a2 () v o
.. 2mV, 1
f(@)=—7+=

uh® y’ +4k’sin” /2

For pure Coulomb, the cross section becomes classic Rutherford

n*  4rme, 4k’sin’@/2 16E*sin* @/2

2m Ze-Z,e 1 : | Ze-Z,e : 1
47e,

= =|f @)\ »[

Charged particle scattering: electrons, protons, alpha particles, .....
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Scattering theory

Scattering theory is important as it underpins one of the most ubiquitous
tools in physics.

@ Almost everything we know about nuclear and atomic physics has
been discovered by scattering experiments,

e.g. Rutherford’s discovery of the nucleus, the discovery of
sub-atomic particles (such as quarks), etc.

@ In low energy physics, scattering phenomena provide the standard
tool to explore solid state systems,

e.g. neutron, electron, x-ray scattering, etc.

@ As a general topic, it therefore remains central to any advanced
course on quantum mechanics.

@ In these two lectures, we will focus on the general methodology
leaving applications to subsequent courses.



To see = scattering experiment

pole

A
&«
k,\ {,-j wave
= length

Analysis of scattering pattern gives “picture” of object
Smaller objects than wave length of probe cannot be observed
— looks point-like
High resolution < short wave length < high energy

A =hcl/E
Quantum mechanical duality: particle <> wave

High energy particles (photon, electron, proton...) — high resolution



x-ray crystal scattering => the atomic scale structure of ~everything we know

Scattering of | On Energy Result Field
(projectile) | (target)
Electrons Atoms eV, KeV | Electron Atomic
structure physics
Protons Nuclei 20 MeV | Mass distrib., Nuclear
nuclear struct. physics
Electrons Nucleli 200 MeV | Charge Nuclear
distribution physics
Electrons Protons, | 200 MeV | Charge Nuclear
neutrons distribution physics
Electrons Protons, | 10 GeV | Quarks, Particle
neutrons inner structure | Physics

Time

1920

1940

1950

1960

1970


Larry
x-ray crystal scattering => the atomic scale structure of ~everything we know

Larry



Scattering as
a tool for
exploring the
structure of
matter

The search for
fundamental
particles

alpha-nucleus

Rutherford
scattering

The signature of point-particle
scaltering of charged particles

e SCAMEN
:r:gregc;“e - _« Discovery .
Ag= S tm large cosg small
angle angle
electron-nucleus
scatterin Indications of - . Cross section
B structure of the ® | studies indicate
Eﬁj‘n_hg'f nucleus: cross S e scattering off
100 Mev b—|" ‘q\ section d_rnps a point positive
. below point-charge L..a..v. .. .| charge inside
g~ 12fm expectations. nucleus.
electron-proton  small angle scattering :
| scatterin consistant with point Cross section
q.grla.rgg rodon. Large angle Etl_IdIE'-E: indicate
p.;mv'ﬂ;".‘f @ .. scalafing drops scattering off
a -t 3 balow poinl charge a point charge
1GaV — Q\ bahavior, indicating insida the
he~121m ~T————__ that proton has
a Slructre proton.
electron-quark Discovery of Momentum
scattering quarks do transfer inferred
Scattering consistent 35 from electron-
«_with point charge quark scattering
10 GeV |— e\ inside proton (guark) 5 L consistant with
S~ 1ofm Even atthese energies, Momentum  TFee quarks.
e a
the electron remains fraction
intact. It is a fundamental
particle (a leptan) , .
T proton-antiproton At the higheast
9 . 4 collisions produce attained energies,
scattaring : : :
jets of particles the quarks still
100 Gel = R which are consistent  scatter like
, ESS':' with scattering of point particles.

?Lp- 012 fm

charged paint
' particles (quarks)



What is scattering?

Francais: dispersion

Auf Deutsch: Streuen

In Italiano: dispersione

Pa svenska: spridning

Em portugués: dispersar

Roméné Tmprégtiere

ﬁl‘l“ I /\IIM W HA/JJ

English: cause to separate and go in different directions,
deflection, collision, dispersion, diffusion, sprinkling



Applications of Entanglement

_ - BUT 828~ N A
» Tests of non-locality On e IURE. B | ecewrum womLo

(Bell inegualities etc) TS [ HOW CAN WE BE SURE

» Quantum cryptography.
» Quantum computing
» Quantum teleportation

» Interface between
gquantum and classical
worlds

P " :'
e -‘1‘.9' )

7
&




	firstBorn
	Griffiths
	Shankar
	from talks.pdf
	Pages from holy1
	Pages from Pages from scattering-overview
	Pages from Lec_SS5

	xrays electrons to end.pdf
	x-ray electrons
	Pages from lec20-21_compressed
	Pages from scattering-overview-3
	Pages from scattering-overview-2
	Pages from scattering-overview-4
	Pages from vsqm6a




